
Language: Romanian

Sâmbătă, 28 aprilie 2012

Problema 1. Fie punctele A, B şi C pe cercul Γ de centru O astfel încât ∠ABC > 90◦. Fie
D punctul de intersecţie a dreptei AB cu perpendiculara în punctul C pe dreapta AC. Fie `
perpendiculara pe dreapta AO care trece prin punctul D. Fie E punctul de intersecţie a dreptei
` cu dreapta AC şi fie F punctul de intersecţie a cercului Γ cu drepta ` care se află între D şi E.

Să se demonstreze că cercurile circumscrise triunghiurilor BFE şi CFD sunt tangente în F .

Problema 2. Să se demonstreze că∑
circ

(x + y)
√

(z + x)(z + y) ≥ 4(xy + yz + zx),

pentru orice numere reale strict pozitive x, y şi z.

În notaţia de mai sus, membrul stâng al inegalităţii este egal cu:

(x + y)
√

(z + x)(z + y) + (y + z)
√

(x + y)(x + z) + (z + x)
√

(y + z)(y + x).

Problema 3. Fie n un număr natural nenul. Fie Pn = {2n, 2n−1 · 3, 2n−2 · 32, . . . , 3n}. Pentru
fiecare submulţime X a lui Pn notăm cu SX suma tuturor elementelor lui X, cu convenţia că
S∅ = 0, unde ∅ este mulţimea vidă. Fie y un număr real astfel încât 0 ≤ y ≤ 3n+1 − 2n+1.

Să se arate că există o submulţime Y a lui Pn astfel încât 0 ≤ y − SY < 2n.

Problema 4. Fie N∗ mulţimea numerelor naturale nenule. Să se determine toate funcţiile
f : N∗ → N∗ care îndeplinesc simultan următoarele două proprietăţi:

(i) f(n!) = f(n)! pentru orice număr natural nenul n,

(ii) m− n divide f(m)− f(n) pentru orice numere naturale nenule diferite m şi n.

Fiecare problemă este notată cu 10 puncte.
Timp de lucru: 4 ore şi 30 de minute.



Problem 1.

Solution. Let ` ∩ AO = {K} and G be the other end point of the diameter of Γ through
A. Then D,C,G are collinear. Moreover, E is the orthocenter of triangle ADG. Therefore
GE ⊥ AD and G, E, B are collinear.

As ∠CDF = ∠GDK = ∠GAC = ∠GFC, FG is tangent to the circumcircle of triangle
CFD at F . As ∠FBE = ∠FBG = ∠FAG = ∠GFK = ∠GFE, FG is also tangent to the
circumcircle of BFE at F . Hence the circumcircles of the triangles CFD and BFE are tangent
at F .



Problem 2.

Solution 1. We will obtain the inequality by adding the inequalities

(x+ y)
√

(z + x)(z + y) ≥ 2xy + yz + zx

for cyclic permutation of x, y, z.

Squaring both sides of this inequality we obtain

(x+ y)2(z + x)(z + y) ≥ 4x2y2 + y2z2 + z2x2 + 4xy2z + 4x2yz + 2xyz2

which is equivalent to

x3y + xy3 + z(x3 + y3) ≥ 2x2y2 + xyz(x+ y)

which can be rearranged to
(xy + yz + zx)(x− y)2 ≥ 0,

which is clearly true.

Solution 2. For positive real numbers x, y, z there exists a triangle with the side lengths√
x+ y,

√
y + z,

√
z + x and the area K =

√
xy + yz + zx/2.

The existence of the triangle is clear by simple checking of the triangle inequality. To prove the
area formula, we have

K =
1

2

√
x+ y

√
z + x sinα,

where α is the angle between the sides of length
√
x+ y and

√
z + x. On the other hand, from

the law of cosines we have

cosα =
x+ y + z + x− y − z

2
√

(x+ y)(z + x)
=

x√
(x+ y)(z + x)

and

sinα =
√

1− cos2 α =

√
xy + yz + zx√
(x+ y)(z + x)

.

Now the inequality is equivalent to

√
x+ y

√
y + z

√
z + x

∑
cyc

√
x+ y ≥ 16K2.

This can be rewritten as
√
x+ y

√
y + z

√
z + x

4K
≥ 2

K∑
cyc

√
x+ y/2

to become the Euler inequality R ≥ 2r.



Problem 3.

Solution 1. Let α = 3/2 so 1 + α > α2.

Given y, we construct Y algorithmically. Let Y = ∅ and of course S∅ = 0. For i = 0 to m,
perform the following operation:

If SY + 2i3m−i ≤ y, then replace Y by Y ∪ {2i3m−i}.

When this process is �nished, we have a subset Y of Pm such that SY ≤ y.

Notice that the elements of Pm are in ascending order of size as given, and may alternatively
be described as 2m, 2mα, 2mα2, . . . , 2mαm. If any member of this list is not in Y , then no two
consecutive members of the list to the left of the omitted member can both be in Y . This is
because 1 + α > α2, and the greedy nature of the process used to construct Y .

Therefore either Y = Pm, in which case y = 3m+1 − 2m+1 and all is well, or at least one of the
two leftmost elements of the list is omitted from Y .

If 2m is not omitted from Y , then the algorithmic process ensures that (SY − 2m) + 2m−13 > y,
and so y − SY < 2m. On the other hand, if 2m is omitted from Y , then y − SY < 2m).

Solution 2. Note that 3m+1 − 2m+1 = (3 − 2)(3m + 3m−1 · 2 + · · · + 3 · 2m−1 + 2m) = SPm .
Dividing every element of Pm by 2m gives us the following equivalent problem:

Let m be a positive integer, a = 3/2, and Qm = {1, a, a2, . . . , am}. Show that for any real
number x satisfying 0 ≤ x ≤ 1 + a + a2 + · · · + am, there exists a subset X of Qm such that
0 ≤ x− SX < 1.

We will prove this problem by induction on m. When m = 1, S∅ = 0, S{1} = 1, S{a} = 3/2,
S{1,a} = 5/2. Since the di�erence between any two consecutive of them is at most 1, the claim
is true.

Suppose that the statement is true for positive integer m. Let x be a real number with 0 ≤
x ≤ 1 + a+ a2 + · · ·+ am+1. If 0 ≤ x ≤ 1 + a+ a2 + · · ·+ am, then by the induction hypothesis
there exists a subset X of Qm ⊂ Qm+1 such that 0 ≤ x− SX < 1.

If
am+1 − 1

a− 1
= 1 + a+ a2 + · · ·+ am < x, then x > am+1 as

am+1 − 1

a− 1
= 2(am+1 − 1) = am+1 + (am+1 − 2) ≥ am+1 + a2 − 2 = am+1 +

1

4
.

Therefore 0 < (x − am+1) ≤ 1 + a + a2 + · · · + am. Again by the induction hypothesis, there
exists a subset X of Qm satisfying 0 ≤ (x − am+1) − SX < 1. Hence 0 ≤ x − SX′ < 1 where
X ′ = X ∪ {am+1} ⊂ Qm+1.



Problem 4.

Solution 1. There are three such functions: the constant functions 1, 2 and the identity
function idZ+ . These functions clearly satisfy the conditions in the hypothesis. Let us prove
that there are only ones.

Consider such a function f and suppose that it has a �xed point a ≥ 3, that is f(a) = a. Then
a!, (a!)!, · · · are all �xed points of f , hence the function f has a strictly increasing sequence
a1 < a2 < · · · < ak < · · · of �xed points. For a positive integer n, ak − n divides ak − f(n) =
f(ak)− f(n) for every k ∈ Z+. Also ak − n divides ak − n, so it divides ak − f(n)− (ak − n) =
n− f(n). This is possible only if f(n) = n, hence in this case we get f = idZ+ .

Now suppose that f has no �xed points greater than 2. Let p ≥ 5 be a prime and notice that
by Wilson's Theorem we have (p − 2)! ≡ 1 (mod p). Therefore p divides (p − 2)! − 1. But
(p− 2)!− 1 divides f((p− 2)!)− f(1), hence p divides f((p− 2)!)− f(1) = (f(p− 2))!− f(1).
Clearly we have f(1) = 1 or f(1) = 2. As p ≥ 5, the fact that p divides (f(p − 2))! − f(1)
implies that f(p − 2) < p. It is easy to check, again by Wilson's Theorem, that p does not
divide (p − 1)! − 1 and (p − 1)! − 2, hence we deduce that f(p − 2) ≤ p − 2. On the other
hand, p− 3 = (p− 2)− 1 divides f(p− 2)− f(1) ≤ (p− 2)− 1. Thus either f(p− 2) = f(1)
or f(p− 2) = p− 2. As p− 2 ≥ 3, the last case is excluded, since the function f has no �xed
points greater than 2. It follows f(p− 2) = f(1) and this property holds for all primes p ≥ 5.
Taking n any positive integer, we deduce that p− 2− n divides f(p− 2)− f(n) = f(1)− f(n)
for all primes p ≥ 5. Thus f(n) = f(1), hence f is the constant function 1 or 2.

Solution 2. Note �rst that if f(n0) = n0, then m−n0|f(m)−m for all m ∈ Z+ . If f(n0) = n0

for in�nitely many n0 ∈ Z+ , then f(m)−m has in�nitely many divisors, hence f(m) = m for
all m ∈ Z+ . On the other hand, if f(n0) = n0 for some n0 ≥ 3, then f �xes each term of the
sequence (nk)∞k=0, which is recursively de�ned by nk = nk−1!. Hence if f(3) = 3, then f(n) = n
for all n ∈ Z+ .

We may assume that f(3) 6= 3. Since f(1) = f(1)!, and f(2) = f(2)!, f(1), f(2) ∈ {1, 2}. We
have 4 = 3!−2|f(3)!−f(2). This together with f(3) 6= 3 implies that f(3) ∈ {1, 2}. Let n > 3,
then n!−3|f(n)!−f(3) and 3 - f(n)!, i.e. f(n)! ∈ {1, 2}. Hence we conclude that f(n) ∈ {1, 2}
for all n ∈ Z+ .

If f is not constant, then there exist positive integers m,n with {f(n), f(m)} = {1, 2}. Let
k = 2 + max{m,n}. If f(k) 6= f(m), then k − m|f(k) − f(m). This is a contradiction as
|f(k)− f(m)| = 1 and k −m ≥ 2.

Therefore the functions satisfying the conditions are f ≡ 1, f ≡ 2, f = idZ+ .


