

Language: Romanian

Sâmbătă, 28 aprilie 2012

Problema 1. Fie punctele A, B şi C pe cercul Γ de centru O astfel încât $\angle A B C>90^{\circ}$. Fie D punctul de intersectrie a dreptei $A B$ cu perpendiculara în punctul C pe dreapta $A C$. Fie ℓ perpendiculara pe dreapta $A O$ care trece prin punctul D. Fie E punctul de intersectie a dreptei ℓ cu dreapta $A C$ şi fie F punctul de intersecţie a cercului Γ cu drepta ℓ care se află între D şi E.

Să se demonstreze că cercurile circumscrise triunghiurilor $B F E$ şi $C F D$ sunt tangente în F.

Problema 2. Să se demonstreze că

$$
\sum_{\text {circ }}(x+y) \sqrt{(z+x)(z+y)} \geq 4(x y+y z+z x),
$$

pentru orice numere reale strict pozitive x, y şi z.
În notaţia de mai sus, membrul stâng al inegalităţii este egal cu:

$$
(x+y) \sqrt{(z+x)(z+y)}+(y+z) \sqrt{(x+y)(x+z)}+(z+x) \sqrt{(y+z)(y+x)} .
$$

Problema 3. Fie n un număr natural nenul. Fie $P_{n}=\left\{2^{n}, 2^{n-1} \cdot 3,2^{n-2} \cdot 3^{2}, \ldots, 3^{n}\right\}$. Pentru fiecare submulţime X a lui P_{n} notăm cu S_{X} suma tuturor elementelor lui X, cu convenţia că $S_{\emptyset}=0$, unde \emptyset este mulţimea vidă. Fie y un număr real astfel încât $0 \leq y \leq 3^{n+1}-2^{n+1}$.

Să se arate că există o submulţime Y a lui P_{n} astfel încât $0 \leq y-S_{Y}<2^{n}$.

Problema 4. Fie \mathbb{N}^{*} mulţimea numerelor naturale nenule. Să se determine toate funcţiile $f: \mathbb{N}^{*} \rightarrow \mathbb{N}^{*}$ care îndeplinesc simultan următoarele două proprietăţi:
(i) $f(n!)=f(n)$! pentru orice număr natural nenul n,
(ii) $m-n$ divide $f(m)-f(n)$ pentru orice numere naturale nenule diferite m şi n.

Problem 1.

Solution. Let $\ell \cap A O=\{K\}$ and G be the other end point of the diameter of Γ through A. Then D, C, G are collinear. Moreover, E is the orthocenter of triangle $A D G$. Therefore $G E \perp A D$ and G, E, B are collinear.

As $\angle C D F=\angle G D K=\angle G A C=\angle G F C, F G$ is tangent to the circumcircle of triangle $C F D$ at F. As $\angle F B E=\angle F B G=\angle F A G=\angle G F K=\angle G F E, F G$ is also tangent to the circumcircle of $B F E$ at F. Hence the circumcircles of the triangles $C F D$ and $B F E$ are tangent at F.

Problem 2.

Solution 1. We will obtain the inequality by adding the inequalities

$$
(x+y) \sqrt{(z+x)(z+y)} \geq 2 x y+y z+z x
$$

for cyclic permutation of x, y, z.
Squaring both sides of this inequality we obtain

$$
(x+y)^{2}(z+x)(z+y) \geq 4 x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}+4 x y^{2} z+4 x^{2} y z+2 x y z^{2}
$$

which is equivalent to

$$
x^{3} y+x y^{3}+z\left(x^{3}+y^{3}\right) \geq 2 x^{2} y^{2}+x y z(x+y)
$$

which can be rearranged to

$$
(x y+y z+z x)(x-y)^{2} \geq 0
$$

which is clearly true.
Solution 2. For positive real numbers x, y, z there exists a triangle with the side lengths $\sqrt{x+y}, \sqrt{y+z}, \sqrt{z+x}$ and the area $K=\sqrt{x y+y z+z x} / 2$.

The existence of the triangle is clear by simple checking of the triangle inequality. To prove the area formula, we have

$$
K=\frac{1}{2} \sqrt{x+y} \sqrt{z+x} \sin \alpha,
$$

where α is the angle between the sides of length $\sqrt{x+y}$ and $\sqrt{z+x}$. On the other hand, from the law of cosines we have

$$
\cos \alpha=\frac{x+y+z+x-y-z}{2 \sqrt{(x+y)(z+x)}}=\frac{x}{\sqrt{(x+y)(z+x)}}
$$

and

$$
\sin \alpha=\sqrt{1-\cos ^{2} \alpha}=\frac{\sqrt{x y+y z+z x}}{\sqrt{(x+y)(z+x)}} .
$$

Now the inequality is equivalent to

$$
\sqrt{x+y} \sqrt{y+z} \sqrt{z+x} \sum_{c y c} \sqrt{x+y} \geq 16 K^{2}
$$

This can be rewritten as

$$
\frac{\sqrt{x+y} \sqrt{y+z} \sqrt{z+x}}{4 K} \geq 2 \frac{K}{\sum_{c y c} \sqrt{x+y} / 2}
$$

to become the Euler inequality $R \geq 2 r$.

Problem 3.

Solution 1. Let $\alpha=3 / 2$ so $1+\alpha>\alpha^{2}$.
Given y, we construct Y algorithmically. Let $Y=\varnothing$ and of course $S_{\varnothing}=0$. For $i=0$ to m, perform the following operation:

$$
\text { If } S_{Y}+2^{i} 3^{m-i} \leq y \text {, then replace } Y \text { by } Y \cup\left\{2^{i} 3^{m-i}\right\} .
$$

When this process is finished, we have a subset Y of P_{m} such that $S_{Y} \leq y$.
Notice that the elements of P_{m} are in ascending order of size as given, and may alternatively be described as $2^{m}, 2^{m} \alpha, 2^{m} \alpha^{2}, \ldots, 2^{m} \alpha^{m}$. If any member of this list is not in Y, then no two consecutive members of the list to the left of the omitted member can both be in Y. This is because $1+\alpha>\alpha^{2}$, and the greedy nature of the process used to construct Y.

Therefore either $Y=P_{m}$, in which case $y=3^{m+1}-2^{m+1}$ and all is well, or at least one of the two leftmost elements of the list is omitted from Y.

If 2^{m} is not omitted from Y, then the algorithmic process ensures that $\left(S_{Y}-2^{m}\right)+2^{m-1} 3>y$, and so $y-S_{Y}<2^{m}$. On the other hand, if 2^{m} is omitted from Y, then $y-S_{Y}<2^{m}$).

Solution 2. Note that $3^{m+1}-2^{m+1}=(3-2)\left(3^{m}+3^{m-1} \cdot 2+\cdots+3 \cdot 2^{m-1}+2^{m}\right)=S_{P_{m}}$. Dividing every element of P_{m} by 2^{m} gives us the following equivalent problem:

Let m be a positive integer, $a=3 / 2$, and $Q_{m}=\left\{1, a, a^{2}, \ldots, a^{m}\right\}$. Show that for any real number x satisfying $0 \leq x \leq 1+a+a^{2}+\cdots+a^{m}$, there exists a subset X of Q_{m} such that $0 \leq x-S_{X}<1$.

We will prove this problem by induction on m. When $m=1, S_{\varnothing}=0, S_{\{1\}}=1, S_{\{a\}}=3 / 2$, $S_{\{1, a\}}=5 / 2$. Since the difference between any two consecutive of them is at most 1, the claim is true.

Suppose that the statement is true for positive integer m. Let x be a real number with $0 \leq$ $x \leq 1+a+a^{2}+\cdots+a^{m+1}$. If $0 \leq x \leq 1+a+a^{2}+\cdots+a^{m}$, then by the induction hypothesis there exists a subset X of $Q_{m} \subset Q_{m+1}$ such that $0 \leq x-S_{X}<1$.

If $\frac{a^{m+1}-1}{a-1}=1+a+a^{2}+\cdots+a^{m}<x$, then $x>a^{m+1}$ as

$$
\frac{a^{m+1}-1}{a-1}=2\left(a^{m+1}-1\right)=a^{m+1}+\left(a^{m+1}-2\right) \geq a^{m+1}+a^{2}-2=a^{m+1}+\frac{1}{4} .
$$

Therefore $0<\left(x-a^{m+1}\right) \leq 1+a+a^{2}+\cdots+a^{m}$. Again by the induction hypothesis, there exists a subset X of Q_{m} satisfying $0 \leq\left(x-a^{m+1}\right)-S_{X}<1$. Hence $0 \leq x-S_{X^{\prime}}<1$ where $X^{\prime}=X \cup\left\{a^{m+1}\right\} \subset Q_{m+1}$.

Problem 4.

Solution 1. There are three such functions: the constant functions 1,2 and the identity function $\mathrm{id}_{\mathbf{z}^{+}}$. These functions clearly satisfy the conditions in the hypothesis. Let us prove that there are only ones.

Consider such a function f and suppose that it has a fixed point $a \geq 3$, that is $f(a)=a$. Then $a!,(a!)!, \cdots$ are all fixed points of f, hence the function f has a strictly increasing sequence $a_{1}<a_{2}<\cdots<a_{k}<\cdots$ of fixed points. For a positive integer n, $a_{k}-n$ divides $a_{k}-f(n)=$ $f\left(a_{k}\right)-f(n)$ for every $k \in \mathbf{Z}^{+}$. Also $a_{k}-n$ divides $a_{k}-n$, so it divides $a_{k}-f(n)-\left(a_{k}-n\right)=$ $n-f(n)$. This is possible only if $f(n)=n$, hence in this case we get $f=\mathrm{id}_{\mathbf{Z}^{+}}$.

Now suppose that f has no fixed points greater than 2 . Let $p \geq 5$ be a prime and notice that by Wilson's Theorem we have $(p-2)!\equiv 1(\bmod p)$. Therefore p divides $(p-2)!-1$. But $(p-2)!-1$ divides $f((p-2)!)-f(1)$, hence p divides $f((p-2)!)-f(1)=(f(p-2))!-f(1)$. Clearly we have $f(1)=1$ or $f(1)=2$. As $p \geq 5$, the fact that p divides $(f(p-2))$! $-f(1)$ implies that $f(p-2)<p$. It is easy to check, again by Wilson's Theorem, that p does not divide $(p-1)!-1$ and $(p-1)!-2$, hence we deduce that $f(p-2) \leq p-2$. On the other hand, $p-3=(p-2)-1$ divides $f(p-2)-f(1) \leq(p-2)-1$. Thus either $f(p-2)=f(1)$ or $f(p-2)=p-2$. As $p-2 \geq 3$, the last case is excluded, since the function f has no fixed points greater than 2 . It follows $f(p-2)=f(1)$ and this property holds for all primes $p \geq 5$. Taking n any positive integer, we deduce that $p-2-n$ divides $f(p-2)-f(n)=f(1)-f(n)$ for all primes $p \geq 5$. Thus $f(n)=f(1)$, hence f is the constant function 1 or 2 .

Solution 2. Note first that if $f\left(n_{0}\right)=n_{0}$, then $m-n_{0} \mid f(m)-m$ for all $m \in \mathbf{Z}^{+}$. If $f\left(n_{0}\right)=n_{0}$ for infinitely many $n_{0} \in \mathbf{Z}^{+}$, then $f(m)-m$ has infinitely many divisors, hence $f(m)=m$ for all $m \in \mathbf{Z}^{+}$. On the other hand, if $f\left(n_{0}\right)=n_{0}$ for some $n_{0} \geq 3$, then f fixes each term of the sequence $\left(n_{k}\right)_{k=0}^{\infty}$, which is recursively defined by $n_{k}=n_{k-1}!$. Hence if $f(3)=3$, then $f(n)=n$ for all $n \in \mathbf{Z}^{+}$.

We may assume that $f(3) \neq 3$. Since $f(1)=f(1)!$, and $f(2)=f(2)!, f(1), f(2) \in\{1,2\}$. We have $4=3!-2 \mid f(3)!-f(2)$. This together with $f(3) \neq 3$ implies that $f(3) \in\{1,2\}$. Let $n>3$, then $n!-3 \mid f(n)!-f(3)$ and $3 \nmid f(n)!$, i.e. $f(n)!\in\{1,2\}$. Hence we conclude that $f(n) \in\{1,2\}$ for all $n \in \mathbf{Z}^{+}$.

If f is not constant, then there exist positive integers m, n with $\{f(n), f(m)\}=\{1,2\}$. Let $k=2+\max \{m, n\}$. If $f(k) \neq f(m)$, then $k-m \mid f(k)-f(m)$. This is a contradiction as $|f(k)-f(m)|=1$ and $k-m \geq 2$.

Therefore the functions satisfying the conditions are $f \equiv 1, f \equiv 2, f=\mathrm{id}_{\mathbf{Z}^{+}}$.

